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Kinetic equations for quasiparticle excitations in ideal crystals, known from solid 
state physics, are generalized to the case of material bodies the crystal structure 
of which is distorted by the existence of continuously distributed defects. Distribu- 
tion of defects is described by a field of local base vectors of a primitive crystal 
lattice. The form of conservation laws implied by such kinetic equations is dis- 
cussed using the example of energy balance in a phonon system. It is shown that 
energy balance can be written either with respect to lattice connection or with 
respect to the Euclidean connection, having a vanishing source term in both cases. 
Transition from one version to another involves a redefinition of the heat flux 
vector. 

1. I N T R O D U C T I O N  

Transpor t  processes in solids are described f rom a microscopic point  o f  
view in terms o f  quasiparticle excitations (Umezawa  et  al., 1982; Fetter  and 
Walecka,  1971). In  turn, quasiparticle systems are often described by kinetic 
equat ions (Ziman,  1962; Gurevich,  1980). In  solid state physics such equa- 
t ions are applied, in particular,  to the description o f  effects caused by lattice 
imperfections (Gurevich,  1980; Reissland, 1973). The presence o f  imperfec- 
tions is then taken into account  by introducing addit ional  collision processes 
into the collision integral. In  such an approach,  based on the geometry  o f  
an ideal crystal, one does not  take into account  that  lattice imperfections 
can destroy the long-range order  o f  a crystal. In  order  to include effects 
resulting f rom the lack o f  a long-range order,  we have to reconsider the 
whole structure o f  the quasiparticle kinetic equation.  

In  mechanics,  cont inuously  distributed dislocations are frequently 
described by means o f  fields o f  local base vectors o f  a primitive crystal lattice 
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(Kroner, 1986; Trz~sowski, 1987). Our aim here is to derive a form of a 
quasiparticle kinetic equation implied by such a description. Our approach 
is based on a localization procedure leading to the replacement of the prod- 
uct of the Brillouin zone and the three-dimensional Euclidian point space 
(which is the domain of a quasiparticle distribution function in the case of 
an ideal crystal) by the sum of local Brillouin zones (with the set of spatial 
points as the index set). From a physical poin t of view, such an approach 
is justified if the mean free path Of excitations is small compared with the 
spatial scale on which base vectors of the local primitive lattice can be 
considered as approximately constant. 

For a perfect crystal a sum of local Brillouin zones is endowed with a 
canonical symplectic structure. Hence, a kinetic equation for quasiparticles 
in a perfect crystal can be obtained formally, from the requirement that its 
structure is given by a Liouville equation with a source term (a Liouvillian 
part of such an equation describes single-particle evolution, while the colli- 
sion integral approximates the effects of the many-body interactions). Such 
a kinetic equation is identical to the one obtained heuristically by writing 
the kinetic equation for quasiparticles in an ideal crystal in lattice coordinates 
and deforming the ideal crystal into a perfect crystal (keeping fixed the form 
of kinetic equation, written in convected coordinates). 

A discussion of the quasiparticle kinetic equation in the case of crystal- 
line bodies, with crystal structure described by fields of local base vectors of 
a crystal lattice, is based on the observation that differential operators defin- 
ing the structure of a quasiparticle kinetic equation in the case of a perfect 
crystal can be represented as cross sections of a certain vector bundle and 
that such cross sections are functions of vector fields, defining a local crystal 
structure of a material body. Such mapping, assigning to the crystal structure 
of a material body (represented by a field of local base vectors) the differen- 
tial operator (which defines a form of a kinetic equation) has a unique 
extension to the case of anholonomic vector fields. The kinetic equation 
obtained in that manner corresponds to the replacement of partial deriva- 
tives computed along the lines of crystallographic coordinates by directional 
derivatives along local base vectors of a crystal lattice. 

Balance laws implied by such a kinetic equation are discussed using the 
example of the energy balance of a phonon system. It is shown that energy 
balance can be alternatively written in two forms, either with respect to the 
lattice connection or with respect to the Euclidian connection, having a 
vanishing source term in both forms. Transition from one version to another 
involves a redefinition of the heat flux vector. 

2. KINETIC EQUATION 

Let us consider a fixed configuration of a crystalline material body B, 
in which the body is mapped on a three-dimensional Euclidian point space 
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E. The material points of the body will be identified with elements of the 
Euclidian space occupied by them. The translation space of E will be denoted 
by 3. Local base vectors of  a primitive crystal lattice are described by three 
linearly independent, globally defined, and smooth vector fields at, I =  1, 2, 3, 
on E with values in 3. Let yj, j =  1, 2, 3, be coordinates of a curvilinear 
coordinate system on E. Then the vector fields at, the fields of dual base 
vectors 1U, J =  1, 2, 3 [defined by (at, F s) = ~J , / ,  J =  1, 2, 3, with ( . ,  �9 ) being 
the scalar product in 3], and the natural base vectors @; and base forms dy ,  
i, j = 1, 2, 3, of the coordinates y; are related via the matrix functions A~ and 
AJ on E according to the well-known formulas (Kroner, 1986; Trzesowski, 
1987): 

i A i  A I _ _  Ri  az = AlOy~ . , ' 11 . , '1 j  - -  o j  

A~A/= fis F s = AJdy  

d y  = AJsF J Oyi = A(a, 

(1) 

In (1), as well as in the rest of this paper, we apply Einstein's convention, 
assuming summation with respect to repeated indices. The "vector" notation 
dy j for base forms follows from the fact that in the considered case of 
Euclidian geometry forms are canonically isomorphic with vectors. Local 
base vectors of the inverse lattice G J, J =  1, 2, 3, will be defined as G s= 2~F s 
and the local Brillouin zone T~,, corresponding to the point x, x~E,  will be 
defined as the quotient space E/ ,~ ,  where ~ is the following equivalence 
relation: 

3 

X~E,  w, w'e3, w ~ w ' -=w-w '=  ~ zjGS(x) (2) 
x 

J = l  

with zj  being arbitrary integers (Ziman, 1962). The equivalence class, corre- 
sponding to the vector w~3, will be denoted as [w]x. The space T ~ - 3 / x  
endowed with the quotient topology has a natural structure of a compact 
Abelian Lie group with a topological structure of a three-dimensional torus 
(the group action is induced by the operation of adding vectors in 3). 

Let us introduce a sum of all local Brillouin zones 

o~:= U T~ (3) 
x~E 

Let V be a three-dimensional real vector space with a fixed basis vi, i = 
1, 2, 3. After introducing in V an equivalence relation, analogous to (2), 

3 

v, v'eV, v ~ v ' - v - v ' =  2 zjvj (4) 
j = l  

where zj are arbitrary integers, we obtain a quotient space T~---U,~v [v], 
where [v] denotes the equivalence class of v in the relation (4). The space 
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T 3 carries a Lie group structure isomorphic to that of T 3. The action of 
T~ on ~- can be defined according to 

T3x  ~ ( [ v ] ,  [w]x) --* [v]" [w]x: = [(vJ+wS)GJ(x)]xe~ (5) 

where vJvj and wSGJ(x) are arbitrary representatives of [v] and [w]~. 
Let us introduce the set Wx of vectors, defined as 

W~:={ ieg;  i=  sJGJ(x) } 2re , I s s l< l r ,  J = l , 2 , 3  (6) 

(Wx contains quasiparticle wave vectors from the interior of the local 
Brillouin zone). 

Let us assume that the coordinate system Yi on E is given by a diffeo- 
morphism between E and R 3 (R denotes a set of real numbers). 

The subset Ux,[01 of T 3 will be defined as 

Ux,[01 : = {[i]; ie Wx} (7) 

and Ux,M will denote the image of U~,[o] under the action of [v] e T~. On the 
subset Ue,[,] of ~ ,  defined as 

ue, M :=x~e Ux, t,l (8) 

we can introduce a coordinate system 

de,[v]: ~3x ( - ~ ,  ~)3~(yl, Y2, Y3, ~1, ~2, ~3) 

-'* v s+~ GS(x(yj)) e U e . [ , l ~  (9) 
x(yj) 

(v s are components of an arbitrary representative vJvs of [v] in the basis 
{v,, 

A set of coordinate systems 

de :=  {de, M; [v] (10) 

is a C~-compatible atlas on ~ ,  which gives ~- a structure of a smooth 
manifold. Let us define a function ~ ,  ~ :  ~ ~ E, as 

~([w]~)  := x (11) 

A triple ( ~ ,  E, ~ )  forms a principal fiber bundle with T 3 as a structure 
group. Vectors tangent to the coordinate lines of charts from the atlas ~ e  
form six globally defined, smooth vector fields on ~,~, which shall be denoted 
by Oy~, 0 sj, i, j = 1, 2, 3 (we apply here the same symbol Oy i for vector fields 
on ~- and E, since, on account of the triviality of the bundle ~ ,  they can 
be canonically identified). By/1~ we shall denote the invariant measure on 
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T 3, normalized in such a way that the "volume" of T 3 is equal to the volume 
of an elementary cell of a local inverse lattice. 

For a perfect crystal, local base vectors of a crystal lattice are natural 
base vectors of a particular coordinate system, called crystallographic 
coordinates (Kroner, 1986). A mapping S: R3~  E 

S: R39(s1, $2, $3) ----~x(si)EE (12) 

defining crystallographic coordinates allows us to parametrize the cotangent 
bundle T*(E) of E by means of parameters (si, flj), i , j= 1, 2, 3, 

~6 ~(Si, [~j) .--4, [~j dsJ(x(si) )~ T*(E) (13) 

where ds j are natural base forms corresponding to crystallographic coordi- 
nates. Note that 2zrds j can be identified with a field of local base vectors G j 
of the inverse lattice of a perfect crystal. Taking this identification into 
account, we can define a function M: T*(E) ~ ~ given by 

T*(~,)( E) ~ ~jdsJ(x(si) ) -'~ [ ~j dsJ(x(si) ) ]x(si)e ~ (14) 

A triple (T*(E), ~ ,  M) forms a covering space, with M as a covering 
mapping. For [ flj[ < zc the mapping M acts as a diffeomorphism, the image 
of which is UE, t0] [compare (8)]. The mapping M, restricted to I flJl < Jr, 
allows us to assign to a canonical symplectic form on T*(E) [implied by a 
cotangent bundle structure (Slawianowski, 1975)] a corresponding symplec- 
tic form on UE,[o]. This symplectic form on Ue, to ] can be uniquely extended 
to the symplectic form on i f ,  invariant under the action of T 3 on ~ .  The 
inverse of this symplectic form on ~ ,  taken with a minus sign, is given by 
a tensor field 

f~ = ~9~j/~ Osj (15) 

where ^ denotes an exterior product and Osj,j = 1, 2, 3, are vector fields on 
~,~, induced by crystallographic coordinates on E [the relation between fields 
O~j on ~ and crystallographic coordinates on E is identical with the relation 
between vector fields Oyj,j= 1, 2, 3, on ~ ,  introduced after the formula (11), 
and curvilinear coordinates yi on E]. The form of a Liouville equation 
implied by such a phase space structure determines a structure of a corre- 
sponding kinetic equation for quasiparticles in an ideal crystal 

~f+  Tr Tr (tg~j^ O0|174 ) (16) 
8t (1,3) (2,4) 

where f denotes the phase density (identical with the quasiparticle distribu- 
tion function). Tr denotes contraction with respect to the indices listed 
below, | denotes a tensor product, o9 is a Hamiltonian function (identical 
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with the quasiparticle dispersion curve), and J ( f )  denotes the collision inte- 
gral. For simplicity, we restrict ourselves to the case when only one branch 
of quasiparticle excitations is present. The form of the collision integral on 
the rhs of (16) is identical with the one known from the ideal crystal case; 
it can be obtained simply by replacing the integration with respect to the 
vectors from the Brillouin zone by integration with respect to the invariant 
measure ~t~ on T~. In our construction the collision rates defining the explicit 
form of the collision integral and the dispersion curve remain unspecified. 
They have to be given by constitutive functions or derived from a micro- 
scopic theory (the dispersion curve can be, in principle, determined from 
diffraction experiments). 

Now we shall discuss the problem of the generalization of the quasi- 
particle kinetic equation to the case of crystalline bodies containing continu- 
ously distributed defects which are described by means of a field of local 
base vectors of a primitive crystal lattice (Kroner, 1986; Trz~sowski, 1987). 
We shall assume that in the case of continuously distributed defects it is still 
possible to introduce a quasiparticle distribution function and a quasiparticle 
dispersion curve, both defined on the manifold o~ (that is, on a sum of local 
Brillouin zones). From a physical point of view, such an assumption is 
justified if the mean free path of excitations is small compared with the 
spatial scale on which base vectors of the local primitive crystal lattice can 
be considered as approximately constant. A mapping 

~[viGi(x)]~ -o i ([v vi], x)~T3v • E (17) 

{with viGi(x) being an arbitrary representative of the point [viGe(x)]x of T~} 
diffeomorphically relates the manifold ~ with the product of a material 
body (which is, in our case, identified with the Euclidian point space E) 
and of a torus group T3v. As a consequence, the domain of quasiparticle 
distribution function can be parametrized by a pair of variables, one parame- 
trizing points of T3v (and measuring the quasiparticle wave vector in terms 
of local base vectors of the inverse lattice), and the second, specifying the 
space point occupied by quasiparticle. 

From the fact that the tensor field c3~, ̂  ~3~.~, which defines the lhs of the 
kinetic equation in the case of perfect crystal, is invariant under the action 
of T 3, it follows that it can be represented as a cross section of a vector 
bundle W, 

W:= x~E A { (~c~~ Tx(E))| (.L~O Tx(E))} (18) 

where L~ a denotes a Lie algebra of T 3, Tx(E) is a vector space tangent to 
E at x, G denotes a direct sum of vector spaces, and A is a symbol of 
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antisymmetrization. To construct this cross section explicitly, let us parame- 
trize a certain neighborhood of the neutral element of the torus group T 3 
by means of parameters Y~, Y2, Y3 according to the relation 

(Yl, 7/2, 73) ~ [2~ vi]~T3 (19) 

Vectors tangent to the coordinate lines of the coordinate system (19) at ye = 
0, i = 1, 2, 3, shall be denoted by 07,(0 ) . If  0~,, i = 1, 2, 3, form a field of local 
base vectors tangent to coordinate lines of crystal coordinates, then the 
tensor field 0~, A 0s, [which defines a differential operator on the lhs of (16)] 
can be represented as the section E~x -, 0r,(0 ) A 0s,(x) of the bundle W. We 
can now look at the form of a kinetic equation for quasiparticles in a perfect 
crystal as a result of a mapping which assigns to a crystal structure of a 
material body (which is given by fields of local base vectors) a manifold 
with a tensor field 0,, ^ 0~ i invariant under the action of T 3. However, all 
operations defining this mapping act "locally" on the fields of local base 
vectors (in the sense that they do not distinguish whether fields of local base 
vectors are holonomic or not) and can be uniquely generalized to the case 
of anholonomic fields. Namely, let at, I = 1, 2, 3, define a triple of globally 
defined and smooth fields of local base vectors on E, which in curvilinear 
coordinates Yi, i=  1, 2, 3, are given by formulas (1). Then a corresponding 
cross section of W given by E~x--+ 0~,~o)^ a~(x) determines a tensor field 
0,, ^ a, on ~ ,  invariant under the action of T~ [o ~ denotes a sum of local 
Brillouin zones corresponding to the field of bases ai, I =  1, 2, 3, on E, 
whereas 0,, A aI is the exterior product of vector fields 0~, and at = Aj 0y, on 

: for simplicity, we apply here the same symbols a, for vector fields on 
and on E, which is possible because of the triviality of the bundle o~; see 
comments after the formula (11)]. 

In turn, the tensor field 0~, A a~ determines the final form of the kinetic 
equation for quasiparticles in a crystalline body, the crystal structure of 
which is described by a field of local base vectors 

0f+  Tr Tr (0,,A ai) |174 (20) 
Ot (1,3) (2,4) 

In an arbitrary chart from the atlas d e ,  equation (20) takes the form 

~3f , .~[&o Of Of ~Y)&~ (21) 

Note that (21) can be obtained directly from the kinetic equation corre- 
sponding to the case of a perfect crystal by means of a heuristic procedure 
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of replacing partial derivatives, computed along the lines of crystallographic 
coordinates, by directional derivatives along local base vectors of a crystal 
lattice. 

3. ENERGY BALANCE OF A PHONON GAS 

In kinetic theory, conservation laws are obtained as the moment equa- 
tions corresponding to summational invariants (Grad, 1958) (by summa- 
tional invariants one means functions which, multiplied by the collision 
integral and integrated with respect to "momentum" variable, give, for every 
distribution function, identically zero). We shall illustrate a construction of 
the conservation law implied by a kinetic equation of the form (20) by the 
example of a phonon gas. In the case of the kinetic equation for phonons 
in an ideal crystal, phonon energy hal  where 2~rh is the Planck constant, is 
a summational invariant, and the corresponding energy balance of a phonon 
gas has a well-known form (Gurevich, 1980). In order to obtain an energy 
balance law in the case of a geometry of local base vectors, we assume that 
ho~ remains a summational invariant also in the case of nonideal crystal 
structure. We multiply both sides of the kinetic equation (20) by ha~, inte- 
grate it with respect to the measure Px over the local Brillouin zone, integrate 
the result over a volume of a subbody H c  E, change the order of integration 
and differentiation, and make use of the definition of the lattice connection 
(Kroner, 1986; Trz~sowski, 1987) (that is, the connection uniquely defined 
by the condition that vector fields a~ are absolutely parallel). After dividing 
our result by (2g) 3, we obtain 

{~t 5r~ lic~ dpx 5r] h~176 det(A[) d3y= 0 
,(m Ir'~ d, ux 4- Div ~ ;  j (22) 

where Yi, i = 1, 2, 3, are coordinates of a curvilinear coordinate system on E, 
det(A~) is a determinant of the matrix A / [introduced by formulas (1)], yi(H) 
denotes the domain of variables yi parametrizing a subbody H, the vector 
field Vg, given by 

vg= Tr ai@de,@d~ (23) 
(2,3) 

has a meaning of a group velocity of quasiparticles, and Div means a diver- 
gence taken with respect to the lattice connection. In deriving (22) we have 
taken into account that the product of volumes of elementary cells of primi- 
tive and of inverse lattices is equal to (2It) 3 (Gurevich, 1980). 
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From (22) we can immediately obtain a corresponding balance equation 
in a local form 

O Sr~ ho~fdltx Sr~ hcOfVg dl.t, 
r Div - 0 (24) 

ot a 'x d 'x 

However, (22) implies also an alternative form of the local balance law, 
written with respect to the "Euclidian" connection. In order to find such 
alternative form of the local balance equation, we replace covariant diver- 
gence in (22) by a divergence defined by a volume form F 1 ̂  F 2 ̂  F 3 (where 
F J, J =  1, 2, 3, are forms dual to the local base vectors az, I=  1, 2, 3), write 
the divergence term in (22) as the surface integral over OH, and apply Stokes' 
theorem; such transformations are discussed, for example, in Schutz (1982, 
Chapters 4 and 6). As a result, we obtain an identity 

~--fr ~~ dPx~ h f O f V g ~ = 0  (25) Ot 3 x (21r) ~ 3 (Dr) 

where div denotes the Euclidian divergence. Hence, from the kinetic equation 
we can derive two alternative forms of a local balance equation, with the 
definition of a flux vector depending on the connection. The Euclidian form 
of energy balance (25) is analogous to the one known from the case of 
ideal crystals (Gurevich, 1980), and shows that the kinetic equation (20) is 
consistent with the macroscopic conservation laws. 
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